Synthesis and immunosuppressive activity evaluation of substituted N -imidazolidin-2-ones and N -tetrahydropyrimidin-2(1H)-ones

CAROLINE SABOURIN \& JEAN-MICHEL ROBERT
Département de Pharmacochimie, Faculté de Pharmacie, Université de Nantes, Universités de Nantes Atlantique, BioCiT UPRES EA 1155, 1 rue Gaston Veil, F-44035 Nantes, France

(Received 20 December 2007; revised 12 February 2008; accepted 7 May 2008)

Abstract

Seventeen compounds with either an imidazolin-2-one or a tetrahydropyrimidin-2(1H)-one scaffold were synthesized and evaluated for their immunosuppressive activity in a concanavallin A (ConA)-stimulated mouse splenocytes proliferation test. Three of these molecules exerted a significant activity at $90 \mu \mathrm{M}$. All the compounds of the tetrahydropyrimidin $-2(1 \mathrm{H})$-one series have turned out to be inactive showing the crucial role of the imidazolidin-2-one scaffold in the induction of an immunosuppressive activity.

Keywords: Imidazolidin-2-one, tetrahydropyrimidin-2(1H)-one, urea, immunosuppressant agent

Introduction

The control of pathological or deleterious immune responses is very often achieved by an immunosuppressive therapy. Immunosuppressant drugs are mainly used in organ transplantation for the prevention and the treatment of allograft rejection. At the present time, these molecules are also part of autoimmune diseases therapy. Some of these agents can, for example, be used in type I diabetes mellitus [1], arthritis [2,3] and dermatological pathology like psoriasis [4] or systemic lupus erythematosus [5]. In absence of immunosuppression, transplanted organs invariably undergo progressive immune-mediated injury. Acute allograft rejection is primarily mediated by immunological mechanisms implying the activation of T lymphocytes by antigen-presenting cells (APCs). Indeed, recipient T cells have the ability to recognize, through their antigen receptor, donor alloantigens presented by APCs. Once activated, T-cells differentiate, proliferate and become able to damage graft target tissues. T cells also secrete cytokines that
directly cause tissue destruction (e.g., tumor necrosis factor- β) or recruit and activate cells of the innate immune system (e.g., macrophages), which participate to the graft rejection. Current immunosuppressive agents inhibit T-cell responses either directly or through actions on APCs. These drugs can be classified to five groups in regard to their mechanism of action: inhibitors of cytokine production (calcineurin inhibitors such as cyclosporine and tacrolimus), inhibitors of cytokine binding (IL-2 receptor α chain specific monoclonal antibody), inhibitors of cytokine receptor signal transduction (rapamycin), inhibitors of DNA synthesis (cyclophosphamide, azathioprine, mycophenolate mofetil, leflunomide, brequinar sodium, methotrexate) and inhibitors of APC development and maturation (glucocorticoids, rapamycin). Although these agents, over the past 40 years, have transformed solid organ transplantation into a routine clinical procedure with a satisfactory control of acute rejection and adequate short-term graft survival [6], several problems remain. First, these drugs exhibit important side effects due to their

[^0]intrinsic toxicity (e.g., nephrotoxicity of calcineurin inhibitors, hematotoxicity of mycophenolate mofetil, myelotoxicity of rapamycin, etc.) and to their lack of specificity, which triggers a general immunodepression state responsible for an enhanced risk of opportunistic infections and neoplasic complications [7]. These adverse effects often compromise patient and graft survival. Moreover these drugs have low efficiency on chronic graft rejection, which is often responsible for long-term graft loss [8].

In a previous work, we described the synthesis and SAR of a series of imidazolidin-2-ones, which exhibit immunosuppressive properties [9]. These studies permitted us to identify a lead compound $\mathbf{1}$ (Figure 1), which has shown maximal inhibition of the mouse splenocytes Con-A-induced proliferation at $30 \mu \mathrm{M}$. These results are comparable to those obtained with the positive control, cyclosporine A, at $5 \mu \mathrm{M}$ (optimal dose). However, this molecule exerts cytotoxic effects on human MRC5 fibroblasts used in our cytotoxicity assay with an IC_{50} of $21 \mu \mathrm{M}$ and, so, an unsatisfactory toxicity/activity index of 0.7 . These interesting results prompted us to synthesize some derivatives of $\mathbf{1}$. To explore the role of the imidazolidin-2-one scaffold in the emergence of immunosuppressive activity, we first decided to expand the ureic cycle by preparing some tetra-hydropyrimidin-2-($1 H$)-one derivatives. We then synthesized some analogues of 1 with an imidazo-lidin-2-one moiety N-substituted by a phenyl or azaheterocyclic groups like phthalimidic moieties by analogy with some thalidomide analogues which exert TNF- α production inhibitory properties.

Materials and methods

General

Melting points were determined on a Tottoli-Büchi apparatus (Büchi, Flawil, Switzerland) and are uncorrected. Structures of the described compounds were supported by IR, ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and microanalytical data. IR spectra were run with KBr pellets on a PerkinElmer FT-IR Paragon 1000 grating infrared spectrometer (Perkin-Elmer, St-Quentin-en-Yvelines, France). ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra were recorded on a Bruker AC 250 spectrometer (250 MHz) (Bruker, Wissembourg, France), using CDCl_{3} or DMSO as a solvent;

Figure 1. Structure of compound 1.
chemical shifts (δ) are reported in parts per million (ppm), from internal $\mathrm{Me}_{4} \mathrm{Si}$. Mass spectra were recorded on an ESQUIRE-LC spectrometer (Bruker) (electrospray ionisation with ion trap system). Purification of synthesized compounds was made using columns of silica gel (Silica gel 60, 70-230 mesh, E. Merck, Darmstadt, Germany), with appropriate solvents. Anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ was always used as the drying agent. Chemicals were purchased from SigmaAldrich Fluka (St Quentin Fallavier, France), Lancaster Synthesis (Bischeim, France) or Avocado (La Tour du Pin, France).

Chemistry

The synthesis of N-substituted imidazolidin-2-ones $\mathbf{1 0 - 1 7}$ and 33-37, from ureas $2-9$ and $28-32$ respectively, and of N-substituted tétrahydropyrymi-din-2(1H)-ones 42-45, from ureas 38-41, is shown in Scheme 1.

1-(4-Bromophenyl)-3-(2-chloroethyl)urea (2). To a solution of 4 -bromoaniline ($3 \mathrm{~g}, 17.40 \mathrm{mmol}$) in chloroform (50 mL) was added 2-chloroethyl isocyanate ($1.51 \mathrm{~mL}, 17.40 \mathrm{mmol}$). The mixture was refluxed for 40 min , and then the solvent was removed under reduced pressure. The crystalline residue was recrystallized from diethyl ether to give compound 2 as a white powder. M.p. $=177^{\circ} \mathrm{C}$, Yield $=96 \%$. IR $(\mathrm{KBr})\left(\nu, \mathrm{cm}^{-1}\right) 3317(\mathrm{NH}), 1631(\mathrm{C}=\mathrm{O}), 825(\mathrm{C}-$ Cl), 1071 (C-Br). ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) (δ, ppm) 3.40-3.52 (m, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}$), $3.69(\mathrm{t}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{Cl},{ }^{3} \mathrm{~J}=5.8\right), 6.48\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{NH}^{3},{ }^{3} \mathrm{~J}^{\prime}=5.8\right), 8.84$ (s, $1 \mathrm{H}, \mathrm{NH}^{1}$), 7.30-7.50 ($\mathrm{m}, 4 \mathrm{H}, \mathrm{H}_{\text {arom }}$).

Ureas 3-9 and compound 29 were also synthesized according to this procedure with a reflux time in a range of 5 min to 39 h .

1-(2-Chloroethyl)-3-(3-chlorophenyl)urea (3). Recrystallized from diethyl ether. M.p. $=99^{\circ} \mathrm{C}$, Yield $=$ 65%. IR (KBr) ($\left.\nu, \mathrm{cm}^{-1}\right) 3357(\mathrm{NH}), 1638(\mathrm{C}=\mathrm{O})$, 1076 (C-Cl). ${ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)(\delta, \mathrm{ppm})$ 3.55-3.64 (m, 4H, CH $-\mathrm{CH}_{2} \mathrm{Cl}$), $5.89\left(\mathrm{bs}, 1 \mathrm{H}, \mathrm{NH}^{3}\right)$, $7.52\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}^{1}\right), 6.97-7.02\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}^{4^{\prime}}\right), 7.14-7.17$ $\left(\mathrm{m}, 2 \mathrm{H}, \mathrm{H}^{5^{\prime}}\right.$ and $\left.\mathrm{H}^{6^{\prime}}\right), 7.34\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}^{2^{\prime}}\right.$, ${ }^{4} \mathrm{~J}={ }^{4} \mathrm{~J}^{\prime}=1.8$).
1-(2-Chloroethyl)-3-(4-methylthiophenyl)urea (4). Recrystallized from chloroform. M.p. $=123^{\circ} \mathrm{C}$, Yield $=48 \%$. IR (KBr) (ν, cm^{-1}) $3334(\mathrm{NH}), 1636$ $(\mathrm{C}=\mathrm{O}), 818(\mathrm{C}-\mathrm{Cl}) .{ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)(\delta$, ppm) $2.47\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.56-3.68\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}{ }^{-}\right.$ $\mathrm{CH}_{2} \mathrm{Cl}$), 5.53 (bs, $1 \mathrm{H}, \mathrm{NH}^{3}$), 6.95 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{NH}^{1}$), 7.21-7.27 (m, 4H, $\mathrm{H}_{\text {arom }}$).

1-(2-Chloroethyl)-3-(2-phenoxyphenyl)urea (5). Recrystallized from diethyl ether. M.p. $=130^{\circ} \mathrm{C}$, Yield $=74 \%$. IR (KBr) $\left(\nu, \mathrm{cm}^{-1}\right) 3341(\mathrm{NH}), 1641$

Scheme 1. Synthesis of imidazolidin-2-ones 10-17 and 33-37 and tetrahydropyrimidin-2 $1 H$)-ones 42-45. Reaction reagents and conditions: (i) AcOH, reflux; (ii) $\mathrm{Pd} / \mathrm{C} 5 \%, \mathrm{H}_{2}, \mathrm{THF}, 50^{\circ} \mathrm{C}$; (iii) 2-chloroethyl isocyanate, CHCl_{3}, reflux; (iv) 2-chloroethyl isocyanate (8 éq), microwaves, $82^{\circ} \mathrm{C}$, 20 W ; (v) 3-chloropropyl isocyanate, CHCl_{3}, reflux; (vi) $\mathrm{Cs}_{2} \mathrm{CO}_{3}, \mathrm{CH}_{3} \mathrm{CN}$, reflux; (vii) $\mathrm{Na}_{2} \mathrm{CO}_{3}, \mathrm{CH}_{3} \mathrm{CN}$, reflux.
$(\mathrm{C}=\mathrm{O}), 750(\mathrm{C}-\mathrm{Cl}) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)(\delta$, ppm) 3.55-3.65 (m, $\left.4 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{CH}_{2} \mathrm{Cl}\right), 5.40(\mathrm{bs}, 1 \mathrm{H}$, NH^{3}), 6.84 (dd, $1 \mathrm{H}, \mathrm{H}^{3^{\prime}},{ }^{3} \mathrm{~J}=8.0,{ }^{4} \mathrm{~J}=1.6$), 6.94 (dd, $\left.1 \mathrm{H}, \mathrm{H}^{4^{\prime}},{ }^{3} \mathrm{~J}={ }^{3} \mathrm{~J}^{\prime}=8.0\right), 6.98\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{H}^{2^{\prime \prime}}\right.$ and $\left.\mathrm{H}^{6^{\prime \prime}},{ }^{3} \mathrm{~J}^{\prime \prime \prime}=8.0\right), 7.03\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}^{1}\right), 7.08-7.14(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{H}^{5^{\prime}}$ and $\left.\mathrm{H}^{4^{\prime \prime}}\right), 7.33$ (dd, $2 \mathrm{H}, \mathrm{H}^{3^{\prime \prime}}$ and $\mathrm{H}^{5^{\prime \prime}}$, $\left.{ }^{3} \mathrm{~J}^{\prime \prime \prime}={ }^{3} \mathrm{~J}^{\prime \prime \prime \prime}=8.0\right), 8.11\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}^{6},{ }^{3} \mathrm{~J}^{\prime \prime}=8.0\right.$, ${ }^{4} \mathrm{~J}=1.2$).

1-(2-Chloroethyl)-3-(4-chloro-3-trifluoromethyl-

 phenyl) urea (6). Recrystallized from diisopropyl ether. M.p. $=123^{\circ} \mathrm{C}$, Yield $=50 \%$. IR $(\mathrm{KBr})\left(\nu, \mathrm{cm}^{-1}\right)$ $3366(\mathrm{NH}), 1654(\mathrm{C}=\mathrm{O}), 1029$ and $829(\mathrm{C}-\mathrm{Cl}) .{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (δ, ppm) 3.52-3.72 (m, $\left.4 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{CH}_{2} \mathrm{Cl}\right), 5.96\left(\mathrm{bs}, 1 \mathrm{H}, \mathrm{NH}^{3}\right), 7.81(\mathrm{~s}, 1 \mathrm{H}$, $\left.\mathrm{NH}^{1}\right), 7.29-7.41\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{5^{\prime}}\right.$ and $\left.\mathrm{H}^{6^{\prime}}\right), 7.58(\mathrm{~d}, 1 \mathrm{H}$, $\mathrm{H}^{2^{\prime}},{ }^{4} \mathrm{~J}=2.1$).1-(2-Chloroethyl)-3-(1,3-dimethyl(1H)pyrazol-5-yl) urea (7). Recrystallized from dichloromethane/diethyl ether (50/50). M.p. $=128^{\circ} \mathrm{C}$, Yield $=35 \%$. IR (KBr) (ν, cm^{-1}) 3327 (NH), 1687 ($\mathrm{C}=\mathrm{O}$), 782 (C-Cl). ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (δ, ppm) 2.25 ($\mathrm{s}, 3 \mathrm{H}$, CH_{3}), 3.51-3.63 (m, 2H, $\left.\mathrm{CH}_{2} \mathrm{~N}\right), 3.64(\mathrm{t}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{Cl},{ }^{3} \mathrm{~J}=5.8\right), 3.71\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 5.30(\mathrm{bs}, 1 \mathrm{H}$, NH^{3}), 5.97 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}_{\text {pyraz }}$), 6.66 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{NH}^{1}$).

1-(2-Chloroethyl)-3-(quinolin-8-yl)urea (8). Recrystallized from diethyl ether. M.p. $=157^{\circ} \mathrm{C}$, Yield $=84 \%$. IR (KBr) $\left(\nu, \mathrm{cm}^{-1}\right) 3309(\mathrm{NH}), 1648$ $(\mathrm{C}=\mathrm{O}), 823(\mathrm{C}-\mathrm{Cl}) .{ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)(\delta$, ppm) 3.68-3.78 (m, $\left.4 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{CH}_{2} \mathrm{Cl}\right), 5.61(\mathrm{bs}, 1 \mathrm{H}$, $\left.\mathrm{NH}^{3}\right), 7.39-7.45\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{3^{\prime}}\right.$ and $\left.\mathrm{H}^{5^{\prime}}\right), 7.52(\mathrm{dd}, 1 \mathrm{H}$, $\mathrm{H}^{6^{\prime}},{ }^{3} \mathrm{~J}={ }^{3} \mathrm{~J}^{\prime}=7.6$), 8.15 (dd, $1 \mathrm{H}, \mathrm{H}^{4^{\prime}},{ }^{3} \mathrm{~J}^{\prime \prime}=8.3$, $\left.{ }^{4} \mathrm{~J}=1.6\right), 8.53\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}^{7^{\prime}},{ }^{3} \mathrm{~J}=7.6,{ }^{4} \mathrm{~J}=1.2\right), 8.74$ (dd, $\left.1 \mathrm{H}, \mathrm{H}^{2},{ }^{3} \mathrm{~J}^{\prime \prime \prime}=4.2,{ }^{4} \mathrm{~J}=1.6\right), 9.10\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}^{1}\right)$.

1-(2-Chloroethyl)-3-(1H-indol-5-yl)urea (9).
Recrystallized from diethyl ether. M.p. $=153^{\circ} \mathrm{C}$, Yield $=90 \%$. $\mathrm{IR}(\mathrm{KBr})\left(\nu, \mathrm{cm}^{-1}\right) 3421\left(\mathrm{NH}_{\mathrm{indol}}\right)$,

3315 (NH), 1626 ($\mathrm{C}=\mathrm{O}$), 734 (C-Cl). ${ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)(\delta, \mathrm{ppm}) 3.39-3.51(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{~N}$), $3.69\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Cl},{ }^{3} \mathrm{~J}=5.8\right), 6.24(\mathrm{~s}, 1 \mathrm{H}$, $\left.\mathrm{H}^{3^{\prime}}\right), 6.30\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{NH}^{3},{ }^{3} \mathrm{~J}^{\prime}=5.8\right), 7.14-7.18(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{H}^{6^{\prime}}\right), 7.24-7.28\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{2^{\prime}}\right.$ and $\left.\mathrm{H}^{7^{\prime}}\right), 7.87(\mathrm{~s}, 1 \mathrm{H}$, H^{4}), 8.37 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{NH}^{1}$), $10.92\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}_{\text {indol }}\right)$.

1-(2-Chloroethyl)-3-(2-morpholin-4-yl-1,3-dioxo-2,3-dihydro-1H-isoindol-5-yl)urea (29). Recrystallized from diethyl ether. M.p. $=207^{\circ} \mathrm{C}$, Yield $=70 \%$. IR $(\mathrm{KBr})\left(\nu, \mathrm{cm}^{-1}\right) 3354(\mathrm{NH}), 1773$ and 1716 ($\mathrm{C}=$ Oimide), 1653 ($\mathrm{C}=\mathrm{O}$), 738 (C-Cl). ${ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right)(\delta, \mathrm{ppm}) 3.33-3.38(\mathrm{~m}, 4 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{~N}_{\text {morphol }}$), 3.44-3.61 (m, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}$), 3.70-3.81 ($\mathrm{m}, 6 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Cl}$ and $\mathrm{CH}_{2} \mathrm{O}$), 6.74 (bs, $1 \mathrm{H}, \mathrm{NH}^{3}$), $7.68\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{6^{\prime}},{ }^{3} \mathrm{~J}=8.2\right), 7.81\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{7^{\prime}}\right.$, $\left.{ }^{3} \mathrm{~J}=8.2\right), 8.07\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}^{4^{\prime}}\right), 9.49\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}^{1}\right)$.

1-(2-Chloroethyl)-3-(2-morpholin-4-yl-1,3-dioxo-2,3-dihydro- 1 H -isoindol-4-yl) urea (28). In a sealed tube containing 3 -aminophthalimide $(0.51 \mathrm{~g}, 2.06 \mathrm{mmol})$ was added 2 -chloroethyl isocyanate $(1.43 \mathrm{~mL}$, $16,48 \mathrm{mmol})$. The mixture was stirred and heated by microwaves at $82^{\circ} \mathrm{C}$ with a 20 W power during 40 min and taken up into acetone. The solvent was then evaporated under reduced pressure and purification was accomplished by column chromatography over silica gel with dichloromethane. The residue was recrystallized from diethyl ether to give urea 28 as a white powder. M.p. $=226^{\circ} \mathrm{C}$, Yield $=79 \%$. IR (KBr) $\left(\nu, \mathrm{cm}^{-1}\right) 3328(\mathrm{NH}), 1772$ and $1712(\mathrm{C}=$ Oimide $)$, $1700(\mathrm{C}=\mathrm{O}), 745(\mathrm{C}-\mathrm{Cl}) .{ }^{1} \mathrm{H}$ NMR (250 MHz , $\left.\mathrm{DMSO}-d_{6}\right)(\delta, \quad \mathrm{ppm})$ 3.33-3.38 (m, 4H, $\mathrm{CH}_{2} \mathrm{~N}_{\text {morphol }}$), 3.42-3.54 (m, 2H, $\mathrm{CH}_{2} \mathrm{~N}$), 3.60-3.85 $\left(\mathrm{m}, 6 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right.$ and $\left.\mathrm{CH}_{2} \mathrm{Cl}\right), 7.39\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{7^{\prime}}\right.$, $\left.{ }^{3} \mathrm{~J}=7.0\right), 7.73\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}^{6^{\prime}},{ }^{3} \mathrm{~J}=7.0,{ }^{3} \mathrm{~J}^{\prime}=8.5\right), 8.13$
(bs, $1 \mathrm{H}, \mathrm{NH}^{3}$), $8.57\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{5^{\prime}},{ }^{3} \mathrm{~J}^{\prime}=8.5\right), 8.94(\mathrm{~s}$, $1 \mathrm{H}, \mathrm{NH}^{1}$).

Ureas 30-32 were prepared according to the same procedure.

1-(2-Chloroethyl)-3-(2-phenyl-1,3-dioxo-2,3-dihydro-1H-isoindol-4-yl) urea (30). Recrystallized from diethyl ether. M.p. $=193^{\circ} \mathrm{C}$, Yield $=66 \%$. IR (KBr) (ν, cm^{-1}) 3391 (NH), 1753 and 1700 ($\mathrm{C}=$ Oimide), $1682(\mathrm{C}=\mathrm{O}), 767(\mathrm{C}-\mathrm{Cl}) .{ }^{1} \mathrm{H}$ NMR (250 MHz , DMSO- d_{6}) $(\delta, \mathrm{ppm}) 3.43-3.55\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 3.73$ $\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Cl},{ }^{3} \mathrm{~J}=5.8\right), 7.40-7.80\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{H}_{\text {arom }}\right.$ and $\left.\mathrm{H}^{7^{\prime}}\right), 7.80\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}^{6^{\prime}},{ }^{3} \mathrm{~J}^{\prime}=7.3,{ }^{3} \mathrm{~J}^{\prime \prime}=8.5\right), 8.16$ ($\mathrm{t}, 1 \mathrm{H}, \mathrm{NH}^{3},{ }^{3} \mathrm{~J}=5.8$), $8.60\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{5^{\prime}},{ }^{3} \mathrm{~J}^{\prime \prime}=8.5\right)$, $9.04\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}^{1}\right)$.

1-(2-Chloroethyl)-3-(2-phenyl-1,3-dioxo-2,3-dihydro1 H -isoindol-5-yl) urea (31). Recrystallized from diethyl ether. M.p. $=230^{\circ} \mathrm{C}$, Yield $=75 \%$. IR (KBr) (ν, cm^{-1}) $3359(\mathrm{NH}), 1774$ and 1717 ($\mathrm{C}=$ Oimide), 1703 ($\mathrm{C}=\mathrm{O}$), 748 (C-Cl). ${ }^{1} \mathrm{H}$ NMR (250 MHz , DMSO- d_{6}) $(\delta, \mathrm{ppm}) 3.48-3.57\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 3.74$ ($\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Cl},{ }^{3} \mathrm{~J}=5.8$), $6.77\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{NH}^{3},{ }^{3} \mathrm{~J}=5.8\right.$), 7.43-7.59 (m, 5H, $\left.\mathrm{H}_{\text {arom }}\right), 7.71\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}^{6^{\prime}}\right.$, $\left.{ }^{3} \mathrm{~J}^{\prime}=8.2,{ }^{4} \mathrm{~J}=1.8\right), 7.86\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{7^{\prime}},{ }^{3} \mathrm{~J}^{\prime}=8.2\right), 8.19$ $\left(\mathrm{d}, 1 \mathrm{H}, \mathrm{H}^{4^{\prime}},{ }^{4} \mathrm{~J}=1.8\right), 9.55\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}^{1}\right)$.

1-(2-Chloroethyl)-3-(2-benzyl-1,3-dioxo-2,3-dihydro1 H -isoindol-4-yl)urea (32). Recrystallized from dichloromethane. M.p. $=186^{\circ} \mathrm{C}$, Yield $=41 \%$. IR $(\mathrm{KBr})\left(\nu, \mathrm{cm}^{-1}\right) 3317(\mathrm{NH}), 1760$ and 1708 ($\mathrm{C}=$ Oimide), 1659 ($\mathrm{C}=\mathrm{O}$), 740 (C-Cl). ${ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right)(\delta, \mathrm{ppm}) 3.42-3.54(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{~N}$), $3.71\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Cl},{ }^{3} \mathrm{~J}=5.2\right), 4.78(\mathrm{~s}, 2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{Ph}$), $7.20-7.40\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H}_{\text {arom }}\right), 7.44\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{7^{\prime}}\right.$, ${ }^{3} \mathrm{~J}^{\prime}=6.7$), $7.73\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}^{6^{\prime \prime}},{ }^{3} \mathrm{~J}^{\prime}=6.7,{ }^{3} \mathrm{~J}^{\prime \prime}=8.5\right)$, 8.11 (t, $1 \mathrm{H}, \quad \mathrm{NH}^{3},{ }^{3} \mathrm{~J}=5.2$), $8.58\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{5^{\prime}}\right.$, $\left.{ }^{3} \mathrm{~J}^{\prime \prime}=8.5\right), 8.97\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}^{1}\right)$.

1-(4-Chlorophenyl)-3-(3-chloropropyl)urea (38). To a solution of 4 -chloroaniline ($1 \mathrm{~g}, 7.84 \mathrm{mmol}$) in chloroform (50 mL) was added dropwise 3chloropropyl isocyanate ($0.81 \mathrm{~mL}, 7.84 \mathrm{mmol}$). The mixture was refluxed for 1 h , and then the solvent was removed under reduced pressure. The crystalline residue was recrystallized from diethylether to give compound 38 as a white powder. M.p. $=143^{\circ} \mathrm{C}$, Yield $=95 \%$. IR (KBr) $\left(\nu, \mathrm{cm}^{-1}\right) 3331$ (NH), 1635 ($\mathrm{C}=\mathrm{O}$), 828 (C-Cl). ${ }^{1} \mathrm{H}$ NMR (250 MHz , DMSO$\left.d_{6}\right)(\delta, \mathrm{ppm}) 1.86-1.98\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 3.18-$ $3.30\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{NH}\right), 3.70\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Cl}\right.$, $\left.{ }^{3} \mathrm{~J}=6.6\right), 6.33\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{NH}^{3},{ }^{3} \mathrm{~J}^{\prime}=6.6\right), 7.29(\mathrm{~d}, 2 \mathrm{H}$, $\mathrm{H}^{3^{\prime}}$ and $\left.\mathrm{H}^{5^{\prime}},{ }^{3} \mathrm{~J}^{\prime \prime}=8.9\right), 7.45\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{2^{\prime}}\right.$ and $\mathrm{H}^{6^{\prime}}$, $\left.{ }^{3} \mathrm{~J}^{\prime \prime}=8.9\right), 8.63\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}^{1}\right)$.
Ureas 39-41 were synthesized according to this method.

> 1-(3-Chloro-4-fluorophenyl)-3-(3-chloropropyl)-
urea (39). Recrystallized from diethyl ether.
M.p. $=107^{\circ} \mathrm{C}$, Yield $=84 \%$. IR $(\mathrm{KBr})\left(\nu, \mathrm{cm}^{-1}\right)$ 3336 (NH), $1651(\mathrm{C}=\mathrm{O}), 1217(\mathrm{C}-\mathrm{F}), 1052$ and 797 (C-Cl). ${ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)(\delta, \mathrm{ppm}) 1.87-$ $1.99\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 3.29-3.41(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{NH}$), $3.56\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Cl},{ }^{3} \mathrm{~J}=6.2\right), 6.02(\mathrm{t}, 1 \mathrm{H}$, $\left.\mathrm{NH}^{3},{ }^{3} \mathrm{~J}^{\prime}=6.2\right), 6.91-7.00\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{5^{\prime}}\right.$ and $\left.\mathrm{H}^{6^{\prime}}\right), 7.37$ $\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}^{2},{ }^{4} \mathrm{~J}_{\mathrm{HF}}=6.5,{ }^{4} \mathrm{~J}=2.4\right), 7.95(\mathrm{~s}, 1 \mathrm{H}$, NH^{1}).

1-(3-Chloropropyl)-3-(2-methoxy-5-trifluoromethylphEnyl)urea (40). Recrystallized from diethyl ether. M.p. $=158^{\circ} \mathrm{C}$, Yield $=68 \%$. IR (KBr$)\left(\nu, \mathrm{cm}^{-1}\right)$ 3370 (NH), 1653 (C=O), 810 (C-Cl). ${ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)(\delta, \mathrm{ppm}) 1.90-2.15(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$, 3.45-3.65 (m, $4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), $3.91\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 5.01\left(\mathrm{bs}, 1 \mathrm{H}, \mathrm{NH}^{3}\right), 6.89(\mathrm{~d}, 1 \mathrm{H}$, $\left.\mathrm{H}^{3^{\prime}},{ }^{3} \mathrm{~J}=7.0\right), 6.99\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}^{6^{\prime}}\right), 7.25\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{4^{\prime}}\right.$, $\left.{ }^{3} \mathrm{~J}=7.0\right), 8.47\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}^{1}\right)$.

1-(3-Chloro-4-cyanophenyl)-3-(3-chloropropyl)urea (41). Recrystallized from diethyl ether. M.p. $=111^{\circ} \mathrm{C}$, Yield $=89 \%$. IR $(\mathrm{KBr})\left(\nu, \mathrm{cm}^{-1}\right)$ $3321(\mathrm{NH}), 2226(\mathrm{C} \equiv \mathrm{N}), 1677(\mathrm{C}=\mathrm{O}), 828$ and 1045 (C-Cl). ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) (δ, ppm) 1.80-2.00 (m, 2H, CH $\mathrm{CH}_{2} \mathrm{CH}_{2}$), 3.20-3.30 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{NH}$), $3.65-3.75\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Cl}\right), 6.65$ (bs, $1 \mathrm{H}, \mathrm{NH}^{3}$), $7.40\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{6^{\prime}},{ }^{3} \mathrm{~J}=8.8\right), 7.79$ (d , $\left.1 \mathrm{H}, \mathrm{H}^{5^{\prime}},{ }^{3} \mathrm{~J}=8.8\right), 7.94\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}^{2^{\prime}}\right)$.

1-(4-Bromophenyl)imidazolidin-2-one (10). Urea 2 ($2 \mathrm{~g}, 7.21 \mathrm{mmol}$) was dissolved in acetonitrile (50 mL) and cesium carbonate $(2.35 \mathrm{~g}, 7.21 \mathrm{mmol})$ was added. The reaction mixture was stirred and refluxed for 20 h and then filtered. The filtrate solvent was evaporated in vacuo. The crystalline residue was recrystallized from diethyl ether to give compound 10 as a white powder. M.p. $=185^{\circ} \mathrm{C}$, Yield $=75 \%$. MS$\mathrm{ES}^{+}\left(\mathrm{CH}_{3} \mathrm{OH}\right)(\mathrm{m} / \mathrm{z}) 241\left({ }^{81} \mathrm{Br}\right), 239\left({ }^{79} \mathrm{Br}\right)$. IR (KBr) $\left(\nu, \mathrm{cm}^{-1}\right) 1681(\mathrm{C}=\mathrm{O}), 1071(\mathrm{C}-\mathrm{Br}) .{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (δ, ppm) 3.58 ($\mathrm{t}, 2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{NH},{ }^{3} \mathrm{~J}=8.2$), 3.90 ($\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N},{ }^{3} \mathrm{~J}=8.2$), 5.53 (bs, $1 \mathrm{H}, \mathrm{NH}$), $7.40-7.45$ ($\mathrm{m}, 4 \mathrm{H}, \mathrm{H}_{\text {arom }}$).

All imidazolidin-2-ones and tetrahydropyrimidin$2(1 H)$-ones, compound 17 excepted, were prepared according to this procedure, with a reflux time of 30 min to 19 h .

1-(3-Chlorophenyl)imidazolidin-2-one (11). Recrystallized from diethyl ether. M.p. $=121^{\circ} \mathrm{C}$, Yield $=47 \%$. MS-ES ${ }^{+}\left(\mathrm{CH}_{3} \mathrm{OH}\right)(\mathrm{m} / \mathrm{z}) 197\left({ }^{37} \mathrm{Cl}\right)$, $195\left({ }^{35} \mathrm{Cl}\right)$. IR (KBr) $\left(\nu, \mathrm{cm}^{-1}\right) 1703(\mathrm{C}=\mathrm{O}), 1080$ (C-Cl). ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ($\left.\delta, \mathrm{ppm}\right) 3.59$ ($\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{NH},{ }^{3} \mathrm{~J}=8.5$), $3.91\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right.$, $\left.{ }^{3} \mathrm{~J}=8.5\right), 5.65(\mathrm{bs}, 1 \mathrm{H}, \mathrm{NH}), 7.02\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}^{4}\right.$, $\left.{ }^{3} \mathrm{~J}^{\prime}=8.2,{ }^{4} \mathrm{~J}=1.2\right), 7.25\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}^{5},{ }^{3} \mathrm{~J}^{\prime}={ }^{3} \mathrm{~J}^{\prime \prime}=8.2\right)$, $7.43\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}^{6},{ }^{3} \mathrm{~J}^{\prime \prime}=8.2,{ }^{4} \mathrm{~J}^{\prime}=1.2\right), 7.60(\mathrm{dd}, 1 \mathrm{H}$, $\mathrm{H}^{2},{ }^{4} \mathrm{~J}={ }^{4} \mathrm{~J}^{\prime}=1.2$).

1-(4-Methylthiophenyl)imidazolidin-2-one (12). Recrystallized from diisopropyl ether. M.p. $=187^{\circ} \mathrm{C}$, Yield $=32 \%$. MS-ES ${ }^{+}\left(\mathrm{CH}_{3} \mathrm{OH}\right)(\mathrm{m} / \mathrm{z})$ 208. IR $(\mathrm{KBr})\left(\nu, \mathrm{cm}^{-1}\right) 1707(\mathrm{C}=\mathrm{O}) .{ }^{1} \mathrm{H} \operatorname{NMR}(250 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right)(\delta, \mathrm{ppm}) 2.47\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.57(\mathrm{t}, 2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{NH},{ }^{3} \mathrm{~J}=7.3$), 3.87-3.95 (m, $\left.2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 5.08$ (bs, $1 \mathrm{H}, \mathrm{NH}$), $7.28\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{H}^{3}\right.$ and $\mathrm{H}^{5},{ }^{3} \mathrm{~J}^{\prime}=8.8$), $7.48\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{H}^{2}\right.$ and $\left.\mathrm{H}^{6},{ }^{3} \mathrm{~J}^{\prime}=8.8\right)$.

1-(2-Phenoxyphenyl)imidazolidin-2-one (13). Recrystallized from diethyl ether. M.p. $=124^{\circ} \mathrm{C}$, Yield $=48 \%$. MS-ES ${ }^{+} \quad\left(\mathrm{CH}_{3} \mathrm{OH}\right) \quad(\mathrm{m} / \mathrm{z}) \quad 257$ $\left([\mathrm{M}+2 \mathrm{H}]^{+}\right)$. IR $(\mathrm{KBr})\left(\nu, \mathrm{cm}^{-1}\right) 1682(\mathrm{C}=\mathrm{O})$. ${ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)(\delta, \mathrm{ppm}) 3.42$ (t, 2H, $\left.\mathrm{CH}_{2} \mathrm{NH},{ }^{3} \mathrm{~J}=8.4\right), 3.89\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N},{ }^{3} \mathrm{~J}=8.4\right)$, $5.18(\mathrm{bs}, 1 \mathrm{H}, \mathrm{NH}), 6.96-7.01\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}^{3}, \mathrm{H}^{2}\right.$ and $\left.\mathrm{H}^{6^{\prime}}\right), 7.09\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{H}^{4^{\prime}},{ }^{3} \mathrm{~J}^{\prime}=7.5\right), 7.15-7.23(\mathrm{~m}, 2 \mathrm{H}$, H^{4} and $\left.\mathrm{H}^{5}\right), 7.32\left(\mathrm{dd}, 2 \mathrm{H}, \mathrm{H}^{3^{\prime}}\right.$ and $\mathrm{H}^{5^{\prime}}$, $\left.{ }^{3} \mathrm{~J}^{\prime}={ }^{3} \mathrm{~J}^{\prime \prime}=7.5\right), \quad 7.52 \quad\left(\mathrm{dd}, \quad 1 \mathrm{H}, \quad \mathrm{H}^{6}, \quad{ }^{3} \mathrm{~J}^{\prime \prime \prime}=7.2\right.$, ${ }^{4} \mathrm{~J}=2.0$).

1-(4-Chloro-3-trifluoromethylphenyl) imidazolidin-2one (14). Recrystallized from diisopropyl ether. M.p. $=148^{\circ} \mathrm{C}, \quad$ Yield $=76 \%$. MS-ES ${ }^{+}\left(\mathrm{CH}_{3} \mathrm{OH}\right)$ (m / z) 265. IR (KBr) $\left(\nu, \mathrm{cm}^{-1}\right) 1719(\mathrm{C}=\mathrm{O}), 1025$ (C-Cl). ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (δ, ppm) 3.55$3.70\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{NH}\right), 3.90-4.00\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right)$, 5.44 (bs, $1 \mathrm{H}, \mathrm{NH}$), $7.44\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{5},{ }^{3} \mathrm{~J}=8.8\right), 7.76$ (dd, $\left.1 \mathrm{H}, \mathrm{H}^{6},{ }^{3} \mathrm{~J}=8.8,{ }^{4} \mathrm{~J}=2.8\right), 7.82\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{2}\right.$, ${ }^{4} \mathrm{~J}=2.8$).

1-(1,3-Dimethyl(1H)pyrazol-5-yl) imidazolidin-2-one (15). Recrystallized from diethyl ether. M.p. $=130^{\circ} \mathrm{C}, \quad$ Yield $=49 \%$. MS-ES ${ }^{+}\left(\mathrm{CH}_{3} \mathrm{OH}\right)$ $(\mathrm{m} / \mathrm{z})$ 180. IR $(\mathrm{KBr})\left(\nu, \mathrm{cm}^{-1}\right) 1704(\mathrm{C}=\mathrm{O}) .{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (δ, ppm) $2.23(\mathrm{~s}, 3 \mathrm{H}$, CH_{3}), $3.60\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{NH},{ }^{3} \mathrm{~J}=7.4\right), 3.74(\mathrm{~s}, 3 \mathrm{H}$, NCH_{3}), $3.79\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N},{ }^{3} \mathrm{~J}=7.4\right), 5.50(\mathrm{bs}, 1 \mathrm{H}$, NH), 5.88 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{pyraz}}$).

1-(Quinolin-8-yl) imidazolidin-2-one (16). Recrystallized from diethyl ether. M.p. $=151^{\circ} \mathrm{C}$, Yield $=52 \%$. MS-ES ${ }^{+}\left(\mathrm{CH}_{3} \mathrm{OH}\right)(\mathrm{m} / \mathrm{z})$ 213. IR (KBr) $\left(\nu, \mathrm{cm}^{-1}\right)$ 1702 ($\mathrm{C}=\mathrm{O}$). ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) (δ, ppm) 3.53 ($\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{NH},{ }^{3} \mathrm{~J}=8.3$), 4.17 ($\mathrm{t}, 2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{~N},{ }^{3} \mathrm{~J}=8.3$), 6.81 (bs, $1 \mathrm{H}, \mathrm{NH}$), 7.60 (dd, 1 H , $\left.\mathrm{H}^{3},{ }^{3} \mathrm{~J}^{\prime}=8.3,{ }^{3} \mathrm{~J}^{\prime \prime}=4.1\right), 7.63\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}^{6},{ }^{3} \mathrm{~J}^{\prime \prime \prime}=8.2\right.$, $\left.{ }^{3} \mathrm{~J}^{\prime \prime \prime \prime}=7.2\right), 7.77\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}^{7},{ }^{3} \mathrm{~J}^{\prime \prime \prime \prime}=7.2,{ }^{4} \mathrm{~J}=1.1\right)$, $7.90\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}^{5}, \mathrm{~J}^{3} \mathrm{~J}^{\prime \prime}=8.2,{ }^{4} \mathrm{~J}=1.1\right), 8.44(\mathrm{dd}, 1 \mathrm{H}$, $\left.\mathrm{H}^{4},{ }^{3} \mathrm{~J}^{\prime}=8.3,{ }^{4} \mathrm{~J}^{\prime}=1.7\right), 8.95\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}^{2},{ }^{3} \mathrm{~J}^{\prime \prime}=4.1\right.$, ${ }^{4} \mathrm{~J}^{\prime}=1.7$).

1-(2-Morpholin-4-yl-1,3-dioxo-2,3-dihydro-1H-isoin-dol-4-yl) imidazolidin-2-one (33). Recrystallized from diethyl ether. M.p. $=193^{\circ} \mathrm{C}$, Yield $=59 \% . \mathrm{MS}^{\circ}-\mathrm{ES}^{+}$ $\left(\mathrm{CH}_{3} \mathrm{OH}\right)(\mathrm{m} / \mathrm{z}) 318\left([\mathrm{M}+2 \mathrm{H}]^{+}\right)$. IR $(\mathrm{KBr})(\nu$, $\left.\mathrm{cm}^{-1}\right) 1771$ and $1722(\mathrm{C}=$ Oimide), $1661(\mathrm{C}=\mathrm{O})$. ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) (δ, ppm) 3.25-3.35 ($\mathrm{m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}_{\text {morphol }}$), 3.49 ($\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N},{ }^{3} \mathrm{~J}=7.0$), 3.65-3.80 (m, $\left.4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 4.06$ (t, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{NH}$,
$\left.{ }^{3} \mathrm{~J}=7.0\right), 7.19(\mathrm{bs}, 1 \mathrm{H}, \mathrm{NH}), 7.65\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{7}\right.$, $\left.{ }^{3} \mathrm{~J}^{\prime}=6.7\right), 7.78-7.88\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{5}\right.$ and $\left.\mathrm{H}^{6}\right)$.

1-(2-Morpholin-4-yl-1,3-dioxo-2,3-dihydro-1H-isoin-dol-5-yl)imidazolidin-2-one (34). Recrystallized from diethyl ether. M.p. $=288^{\circ} \mathrm{C}$, Yield $=61 \%$. MS-ES ${ }^{+}$ $\left(\mathrm{CH}_{3} \mathrm{OH}\right)(\mathrm{m} / \mathrm{z}) 318\left([\mathrm{M}+2 \mathrm{H}]^{+}\right)$. IR $(\mathrm{KBr})(\nu$, $\left.\mathrm{cm}^{-1}\right) 1774$ and $1719(\mathrm{C}=$ Oimide), $1655(\mathrm{C}=\mathrm{O})$. ${ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right)(\delta, \mathrm{ppm}) 3.25-3.35$ ($\mathrm{m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}_{\text {morphol }}$), 3.49 (t, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N},{ }^{3} \mathrm{~J}=7.3$), 3.65-3.80 ($\mathrm{m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}$), $4.00\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{NH}\right.$, ${ }^{3} \mathrm{~J}=7.3$), $7.48(\mathrm{bs}, 1 \mathrm{H}, \mathrm{NH}), 7.81-7.89\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{6}\right.$ and $\left.\mathrm{H}^{7}\right), 8.20\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}^{4}\right)$.

1-(2-Phenyl-1,3-dioxo-2,3-dihydro-1H-isoindol-4yl) imidazolidin-2-one (35). Recrystallized from diethyl ether. M.p. $=201^{\circ} \mathrm{C}, \quad$ Yield $=87 \% . \quad$ MS-ES ${ }^{+}$ $\left(\mathrm{CH}_{3} \mathrm{OH}\right)(\mathrm{m} / \mathrm{z}) 309\left([\mathrm{M}+2 \mathrm{H}]^{+}\right)$. IR (KBr) $(\nu$, $\left.\mathrm{cm}^{-1}\right) 1759$ and $1714(\mathrm{C}=$ Oimide), $1654(\mathrm{C}=\mathrm{O})$. ${ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right)(\delta, \mathrm{ppm}) 3.44-3.52$ $\left(\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 4.09\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{NH},{ }^{3} \mathrm{~J}=8.1\right), 7.20$ (bs, $1 \mathrm{H}, \mathrm{NH}$), $7.45-7.60$ (m, $5 \mathrm{H}, \mathrm{H}_{\text {arom }}$), 7.77 (dd, $\left.1 \mathrm{H}, \mathrm{H}^{7},{ }^{3} \mathrm{~J}^{\prime}=6.7,{ }^{4} \mathrm{~J}=1.5\right), 7.89\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}^{6}\right.$, ${ }^{3} \mathrm{~J}^{\prime}=6.7,{ }^{3} \mathrm{~J}^{\prime \prime}=8.3$), $7.94\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}^{5},{ }^{3} \mathrm{~J}^{\prime \prime}=8.3\right.$, $\left.{ }^{4} \mathrm{~J}=1.5\right)$.

1-(2-Phenyl-1,3-dioxo-2,3-dihydro-1H-isoindol-5yl) imidazolidin-2-one (36). Recrystallized from diethyl ether. M.p. $=312^{\circ} \mathrm{C}, \quad$ Yield $=78 \%$. MS-ES ${ }^{+}$ $\left(\mathrm{CH}_{3} \mathrm{OH}\right)(\mathrm{m} / \mathrm{z}) 309\left([\mathrm{M}+2 \mathrm{H}]^{+}\right)$. IR (KBr) $(\nu$, $\left.\mathrm{cm}^{-1}\right) 1774$ and $1726(\mathrm{C}=$ Oimide), $1704(\mathrm{C}=\mathrm{O})$. ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) (δ, ppm) 3.52 (t , $\left.2 \mathrm{H}, \quad \mathrm{CH}_{2} \mathrm{~N},{ }^{3} \mathrm{~J}=7.0\right), 4.05\left(\mathrm{t}, 2 \mathrm{H}, \quad \mathrm{CH}_{2} \mathrm{NH}\right.$, $\left.{ }^{3} \mathrm{~J}=7.0\right), 7.40-7.60\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{NH}\right.$ and $\left.\mathrm{H}_{\text {arom }}\right), 7.90-$ $7.95\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{6}\right.$ and $\left.\mathrm{H}^{7}\right), 8.30\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}^{4}\right)$.

1-(2-Benzyl-1,3-dioxo-2,3-dihydro-1H-isoindol-4-yl)imidazolidin-2-one (37). Recrystallized from ethanol. M.p. $=175^{\circ} \mathrm{C}$, Yield $=39 \%$. MS-ES ${ }^{+}\left(\mathrm{CH}_{3} \mathrm{OH}\right)$ $(\mathrm{m} / \mathrm{z}) 323\left([\mathrm{M}+2 \mathrm{H}]^{+}\right)$. IR (KBr) $\left(\nu, \mathrm{cm}^{-1}\right) 1769$ and 1709 ($\mathrm{C}=$ Oimide), $1656(\mathrm{C}=\mathrm{O}) .{ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right)(\delta, \mathrm{ppm}) 3.43-3.51(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{~N}$), $4.08\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{NH},{ }^{3} \mathrm{~J}=7.0\right), 4.78(\mathrm{~s}, 2 \mathrm{H}$, CH_{2}), 7.21 (bs, $1 \mathrm{H}, \mathrm{NH}$), $7.30-7.40\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H}_{\text {arom }}\right)$, $7.69\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{7},{ }^{3} \mathrm{~J}^{\prime}=6.7\right), 7.79-7.90\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{5}\right.$ and H^{6}).

1-(4-Chlorophenyl)tetrahydropyrimidin-2(1H)-one (42). Recrystallized from diethyl ether. M.p. $=164^{\circ} \mathrm{C}, \quad$ Yield $=86 \% . \quad$ MS-ES ${ }^{+}\left(\mathrm{CH}_{3} \mathrm{OH}\right)$ $(\mathrm{m} / \mathrm{z}) 212\left({ }^{37} \mathrm{Cl}\right), 210\left({ }^{35} \mathrm{Cl}\right)$. IR (KBr) $\left(\nu, \mathrm{cm}^{-1}\right)$ 1657 ($\mathrm{C}=\mathrm{O}$), 1092 (C-Cl). ${ }^{1} \mathrm{H}$ NMR (250 MHz , DMSO- d_{6}) (δ, ppm) 1.93-2.01 (m, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}$ CH_{2}), $3.25\left(\mathrm{td}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{NH},{ }^{3} \mathrm{~J}=5.6,{ }^{4} \mathrm{~J}=2.5\right)$, 3.64 (t, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N},{ }^{3} \mathrm{~J}^{\prime}=5.6$), 6.69 (bs, $1 \mathrm{H}, \mathrm{NH}$), 7.30-7.45 (m, 4H, $\mathrm{H}_{\text {arom }}$).

1-(3-Chloro-4-fluorophenyl) tetrahydropyrimidin-2(1H)-one (43). Recrystallized from diethyl ether. M.p. $=153^{\circ} \mathrm{C}, \quad$ Yield $=70 \% . \quad$ MS-ES ${ }^{+}\left(\mathrm{CH}_{3} \mathrm{OH}\right)$ $(\mathrm{m} / \mathrm{z}) 230\left({ }^{37} \mathrm{Cl}\right), 228\left({ }^{35} \mathrm{Cl}\right)$. IR (KBr) $\left(\nu, \mathrm{cm}^{-1}\right)$

1663 (C=O), 1223 (C-F), 1055 (C-Cl). ${ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)(\delta, \mathrm{ppm}) 2.04-2.12(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 3.41\left(\mathrm{td}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{NH},{ }^{3} \mathrm{~J}=5.8\right.$, $\left.{ }^{4} \mathrm{~J}=2.4\right), 3.64\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N},{ }^{3} \mathrm{~J}^{\prime}=5.8\right), 5.61$ (bs, $1 \mathrm{H}, \mathrm{NH}), 7.10\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}^{5},{ }^{3} \mathrm{~J}^{\prime \prime}={ }^{3} \mathrm{~J}_{\mathrm{HF}}=8.8\right), 7.19$ (ddd, $1 \mathrm{H}, \mathrm{H}^{6},{ }^{3} \mathrm{~J}^{\prime \prime}=8.8,{ }^{4} \mathrm{~J}_{\mathrm{HF}}=4.3,{ }^{4} \mathrm{~J}=2.7$), 7.37 (dd, $1 \mathrm{H}, \mathrm{H}^{2},{ }^{4} \mathrm{~J}_{\mathrm{HF}}^{\prime}=6.7,{ }^{4} \mathrm{~J}=2.7$).

1-(2-Methoxy-5-trifluoromethylphenyl) tetrahydropyri-midin-2(1H)-one (44). Recrystallized from diethyl ether. M.p. $=153^{\circ} \mathrm{C}, \quad$ Yield $=20 \% . \quad$ MS-ES ${ }^{+}$ $\left(\mathrm{CH}_{3} \mathrm{OH}\right)(\mathrm{m} / \mathrm{z}) 276\left([\mathrm{M}+2 \mathrm{H}]^{+}\right)$. IR (KBr) $(\nu$, $\left.\mathrm{cm}^{-1}\right) 1665(\mathrm{C}=\mathrm{O}) .{ }^{1} \mathrm{H}$ NMR (250 MHz , DMSO$\left.d_{6}\right)(\delta, \mathrm{ppm}) 1.85-2.05\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 3.15-$ $3.55\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 3.88\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$, $6.58(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 7.26\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{3},{ }^{3} \mathrm{~J}=8.6\right), 7.52(\mathrm{~s}$, $\left.1 \mathrm{H}, \mathrm{H}^{6}\right), 7.62\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{4},{ }^{3} \mathrm{~J}=8.6\right)$.

1-(3-Chloro-4-cyanophenyl)tetrahydropyrimidin-2(1H)-one (45). Recrystallized from diisopropyl ether. M.p. $=169^{\circ} \mathrm{C}$, Yield $=88 \%$. MS-ES ${ }^{+}\left(\mathrm{CH}_{3} \mathrm{OH}\right)$ $(\mathrm{m} / \mathrm{z}) 240\left([\mathrm{M}+2 \mathrm{H}]^{+},,{ }^{37} \mathrm{Cl}\right), 238\left([\mathrm{M}+2 \mathrm{H}]^{+}\right.$, $\left.{ }^{35} \mathrm{Cl}\right)$. IR (KBr) $\left(\nu, \mathrm{cm}^{-1}\right) 2227(\mathrm{C} \equiv \mathrm{N}), 1669$ (C=O), 1047 (C-Cl). ${ }^{1} \mathrm{H}$ NMR (250 MHz , DMSO$\left.d_{6}\right)(\delta, \mathrm{ppm}) 1.96-2.03\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 3.25$ (td, $\left.2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{NH},{ }^{3} \mathrm{~J}=5.6,{ }^{4} \mathrm{~J}=2.4\right), 3.74(\mathrm{t}, 2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{~N},{ }^{3} \mathrm{~J}^{\prime}=5.6$), $7.12(\mathrm{bs}, 1 \mathrm{H}, \mathrm{NH}), 7.54(\mathrm{dd}, 1 \mathrm{H}$, $\left.\mathrm{H}^{6},{ }^{3} \mathrm{~J}^{\prime \prime}=8.8,{ }^{4} \mathrm{~J}=2.0\right), 7.81\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{2},{ }^{4} \mathrm{~J}=2.0\right)$, 7.89 (d, $1 \mathrm{H}, \mathrm{H}^{5},{ }^{3} \mathrm{~J}^{\prime \prime}=8.8$).

1-(1H-indol-5-yl)imidazolidin-2-one (17). Urea 9 ($0.5 \mathrm{~g}, 2.10 \mathrm{mmol}$) was dissolved in acetonitrile $(50 \mathrm{~mL})$ and sodium carbonate $(0.22 \mathrm{~g}, 2.10 \mathrm{mmol})$ was added. The reaction mixture was stirred and refluxed for 6 h and then filtered. The filtrate solvent was removed under reduced pressure. Crystallization of the oily residue from dichloromethane/diethyl ether (50/50) gave the compound 17 as a white powder. M.p. $=256^{\circ} \mathrm{C}, \quad$ Yield $=41 \%$. MS-ES ${ }^{+}\left(\mathrm{CH}_{3} \mathrm{OH}\right)$ $(\mathrm{m} / \mathrm{z}) 202\left([\mathrm{M}+\mathrm{H}]^{+}\right)$. IR (KBr) $\left(\nu, \mathrm{cm}^{-1}\right) 3384$ $\left(\mathrm{NH}_{\text {indol }}\right), 1674(\mathrm{C}=\mathrm{O}) .{ }^{1} \mathrm{H}$ NMR (250 MHz , DMSO- d_{6}) ($\left.\delta, \quad \mathrm{ppm}\right) 3.78$ (t, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{NH}$, $\left.{ }^{3} \mathrm{~J}=8.2\right), 4.24\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N},{ }^{3} \mathrm{~J}=8.2\right), 6.34 \quad(\mathrm{~s}$, $\left.1 \mathrm{H}, \mathrm{H}^{3}\right), 7.16\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{6},{ }^{3} \mathrm{~J}^{\prime}=8.8\right), 7.24-7.28(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{H}^{2}$ and H^{7}), $7.87\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}^{4}\right), 8.70(\mathrm{bs}, 1 \mathrm{H}, \mathrm{NH})$, $10.88\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}_{\text {indol }}\right)$.

2-Morpholin-4-yl-4-nitro-1H-isoindole-1,3(2H)-dione (18). To a solution of 3-nitrophthalic anhydride (2 g , $10.36 \mathrm{mmol})$ in glacial acetic acid (15 mL) was added N-aminomorpholine ($1 \mathrm{~mL}, 10.36 \mathrm{mmol}$). The reaction mixture was stirred and refluxed for 19 h and then evaporated in vacuo. The crystalline residue was taken up into a solution of sodium hydrogenocarbonate (4\%), filtered, washed with water, dried and recrystallized from ethanol to give 18 as a yellow powder. M.p. $=189^{\circ} \mathrm{C}$, Yield $=79 \%$.

IR (KBr) $\left(\nu, \mathrm{cm}^{-1}\right) 1795$ and $1729(\mathrm{C}=$ Oimide), 1530 and $1360\left(\mathrm{NO}_{2}\right) \cdot{ }^{1} \mathrm{H}$ NMR $(250 \mathrm{MHz}$, DMSO$\left.d_{6}\right)(\delta, \mathrm{ppm}) 3.25-3.40\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 3.70-3.80$ ($\mathrm{m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}$) , 8.09 (dd, $1 \mathrm{H}, \mathrm{H}^{6},{ }^{3} \mathrm{~J}={ }^{3} \mathrm{~J}^{\prime}=7.6$), $8.17\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{7},{ }^{3} \mathrm{~J}=7.6\right), 8.31\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{5}\right.$, ${ }^{3} \mathrm{~J}^{\prime}=7.6$).

Compounds 19-22 were synthesized according this method.

2-Morpholin-4-yl-5-nitro-1H-isoindole-1,3(2H)-
dione (19). Recrystallized from ethanol. M.p. $=221^{\circ} \mathrm{C}$, Yield $=72 \%$. IR $(\mathrm{KBr})\left(\nu, \mathrm{cm}^{-1}\right)$ 1724 and $1721\left(\mathrm{C}=\right.$ Oimide), 1540 and $1346\left(\mathrm{NO}_{2}\right)$. ${ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)(\delta, \mathrm{ppm}) 3.42(\mathrm{t}, 4 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{~N},{ }^{3} \mathrm{~J}=4.3\right), 3.89\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O},{ }^{3} \mathrm{~J}=4.3\right), 8.06$ (d, $1 \mathrm{H}, \mathrm{H}^{7},{ }^{3} \mathrm{~J}^{\prime}=8.0$), $8.63\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}^{6},{ }^{3} \mathrm{~J}^{\prime}=8.0\right.$, $\left.{ }^{4} \mathrm{~J}=2.0\right), 8.67\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{4},{ }^{4} \mathrm{~J}=2.0\right)$.

2-Phenyl-4-nitro-1H-isoindole-1,3(2H)-dione (20). Recrystallized from ethanol. M.p. $=121^{\circ} \mathrm{C}$, Yield $=91 \%$. IR (KBr) $\left(\nu, \mathrm{cm}^{-1}\right) 1776$ and 1734 ($\mathrm{C}=$ Oimide), 1545 and $1352\left(\mathrm{NO}_{2}\right) .{ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right)(\delta, \mathrm{ppm}) 7.48-7.62(\mathrm{~m}, 5 \mathrm{H}$, $\mathrm{H}_{\text {arom }}$), 8.16 (dd, $1 \mathrm{H}, \mathrm{H}^{6},{ }^{3} \mathrm{~J}={ }^{3} \mathrm{~J}^{\prime}=7.6$), 8.30 (dd, $\left.1 \mathrm{H}, \mathrm{H}^{7},{ }^{3} \mathrm{~J}=7.6,{ }^{4} \mathrm{~J}=0.9\right), 8.38$ (dd, $1 \mathrm{H}, \mathrm{H}^{5}$, ${ }^{3} \mathrm{~J}^{\prime}=7.6,{ }^{4} \mathrm{~J}=0.9$).

2-Phenyl-5-nitro-1H-isoindole-1,3(2H)-dione (21). Recrystallized from ethanol. M.p. $=189^{\circ} \mathrm{C}$, Yield $=94 \%$. IR $(\mathrm{KBr})\left(\nu, \mathrm{cm}^{-1}\right) 1780$ and 1719 ($\mathrm{C}=$ Oimide), 1542 and $1342\left(\mathrm{NO}_{2}\right) .{ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right)(\delta, \mathrm{ppm}) 7.48-7.63(\mathrm{~m}, 5 \mathrm{H}$, $\left.\mathrm{H}_{\text {arom }}\right), 8.26\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{7},{ }^{3} \mathrm{~J}=8.3\right), 8.63\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{4}\right.$, $\left.{ }^{4} \mathrm{~J}=1.8\right), 8.73\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}^{6},{ }^{3} \mathrm{~J}=8.3,{ }^{4} \mathrm{~J}=1.8\right)$.

2-Benzyl-4-nitro-1H-isoindole-1,3(2H)-dione (22). Recrystallized from ethanol. M.p. $=141^{\circ} \mathrm{C}$, Yield $=87 \%$. IR $(\mathrm{KBr})\left(\nu, \mathrm{cm}^{-1}\right) 1778$ and 1720 ($\mathrm{C}=$ Oimide), 1538 and $1331\left(\mathrm{NO}_{2}\right) .{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $(\delta, \mathrm{ppm}) 4.81\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, $7.30-7.38\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H}_{\text {arom }}\right), 8.10\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}^{6}\right.$, $\left.{ }^{3} \mathrm{~J}={ }^{3} \mathrm{~J}^{\prime}=7.6\right), 8.22\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{7},{ }^{3} \mathrm{~J}=7.6\right), 8.32(\mathrm{~d}$, $1 \mathrm{H}, \mathrm{H}^{5},{ }^{3} \mathrm{~J}^{\prime}=7.6$.

4-Amino-2-morpholin-4-yl-1H-isoindole-1,3(2H)-dione (23). To a solution of compound 18 (1.29 g , $4.65 \mathrm{mmol})$ in tetrahydrofurane (100 mL) was added catalytic quantity of 5% palladium on carbon. The reaction mixture was heated at $50^{\circ} \mathrm{C}$ and stirred under hydrogen atmosphere for 8 h . The catalyst was then filtered and the solvent evaporated under reduced pressure. The oily residue was purified by column chromatography over silica gel with dichloromethane and recrystallized from diethyl ether to give compound 23 as a yellow powder. M.p. $=264^{\circ} \mathrm{C}$, Yield $=89 \%$. IR (KBr) $\left(\nu, \mathrm{cm}^{-1}\right) 3399$ and 1623 $\left(\mathrm{NH}_{2}\right), 1773$ and 1705 (C=Oimide). ${ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right)(\delta, \mathrm{ppm}) 3.30\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right.$, ${ }^{3} \mathrm{~J}=4.3$), $3.72\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O},{ }^{3} \mathrm{~J}=4.3\right), 6.50(\mathrm{bs}, 2 \mathrm{H}$,
$\left.\mathrm{NH}_{2}\right), 6.96\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}^{5},{ }^{3} \mathrm{~J}=7.0,{ }^{4} \mathrm{~J}=0.6\right), 7.02(\mathrm{dd}$, $\left.1 \mathrm{H}, \mathrm{H}^{7},{ }^{3} \mathrm{~J}^{\prime}=8.5,{ }^{4} \mathrm{~J}=0.6\right), 7.47\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}^{6}\right.$, ${ }^{3} \mathrm{~J}=7.6,{ }^{3} \mathrm{~J}^{\prime}=8.5$).

Compounds 24-27 were synthesized according this method.

5-Amino-2-morpholin-4-yl-1H-isoindole-1,3(2H)dione (24). Recrystallized from diethyl ether. M.p. $=249^{\circ} \mathrm{C}$, Yield $=80 \%$. IR (KBr) $\left(\nu, \mathrm{cm}^{-1}\right)$ 3454, 3353 and $1617\left(\mathrm{NH}_{2}\right), 1763$ and 1703 $\left(\mathrm{C}=\right.$ Oimide). ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (δ, ppm) $3.40\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N},{ }^{3} \mathrm{~J}=4.9\right), 3.87(\mathrm{t}, 4 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{O},{ }^{3} \mathrm{~J}=4.9\right), 4.40\left(\mathrm{bs}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 6.84(\mathrm{dd}, 1 \mathrm{H}$, $\left.\mathrm{H}^{6},{ }^{3} \mathrm{~J}=8.0,{ }^{4} \mathrm{~J}=2.1\right), 7.02\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{4},{ }^{4} \mathrm{~J}=2.1\right)$, $7.60\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{7},{ }^{3} \mathrm{~J}=8.0\right)$.

4-Amino-2-phenyl-1H-isoindole-1,3(2H)-dione (25). Recrystallized from diethyl ether. M.p. $=180^{\circ} \mathrm{C}$, Yield $=80 \%$. IR (KBr) $\left(\nu, \mathrm{cm}^{-1}\right) 3472,3351$ and $1630\left(\mathrm{NH}_{2}\right), 1753$ and $1704\left(\mathrm{C}=\right.$ Oimide). ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $(\delta, \mathrm{ppm}) 6.60\left(\mathrm{bs}, 2 \mathrm{H}, \mathrm{NH}_{2}\right)$, 7.06-7.12 (m, $2 \mathrm{H}, \mathrm{H}^{5}$ and H^{7}), 7.42-7.58 (m, $6 \mathrm{H}, \mathrm{H}^{6}$ and $\mathrm{H}_{\text {arom }}$).

5-Amino-2-phenyl-1H-isoindole-1,3(2H)-dione (26). Recrystallized from diethyl ether. M.p. $=207^{\circ} \mathrm{C}$, Yield $=68 \%$. IR (KBr) $\left(\nu, \mathrm{cm}^{-1}\right) 3492,3373$ and $1629\left(\mathrm{NH}_{2}\right), 1769$ and $1690\left(\mathrm{C}=\right.$ Oimide). ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $(\delta, \mathrm{ppm}) 6.61\left(\mathrm{bs}, 2 \mathrm{H}, \mathrm{NH}_{2}\right)$, $6.90\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{6},{ }^{3} \mathrm{~J}=8.0\right), 7.04\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}^{4}\right), 7.30-$ $7.54\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H}_{\text {arom }}\right), 7.62\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{7},{ }^{3} \mathrm{~J}=8.0\right)$.

4-Amino-2-benzyl-1H-isoindole-1,3(2H)-dione (27). Recrystallized from diethyl ether. M.p. $=147^{\circ} \mathrm{C}$, Yield $=78 \%$. $\mathrm{IR}(\mathrm{KBr})\left(\nu, \mathrm{cm}^{-1}\right) 3477,3355$ and $1634\left(\mathrm{NH}_{2}\right), 1744$ and $1690\left(\mathrm{C}=\right.$ Oimide). ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) (δ, ppm) 4.73 (s, $2 \mathrm{H}, \mathrm{CH}_{2}$), $6.53\left(\mathrm{bs}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 7.00-7.05\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{5}\right.$ and $\left.\mathrm{H}^{7}\right)$, 7.20-7.40 (m, $\left.5 \mathrm{H}, \mathrm{H}_{\text {arom }}\right), 7.47\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}^{6}\right.$, ${ }^{3} \mathrm{~J}={ }^{3} \mathrm{~J}^{\prime}=7.9$).

Pharmacology

Drugs. All compounds were solubilized in DMSO and further diluted in RPMI ("Roswell Park Memorial Institute") medium (Sigma, St Quentin Fallavier, France) complemented with 1% L-glutamine (Gibco, BRL, Paisley, Scotland) and 10\% heat inactivated fetal calf serum (FCS) (Sigma) referred as complete medium. Cyclosporine A (CsA) (Tocris, Illkirch, France) was dissolved in absolute ethanol containing 2% Tween 80 and this solution was further diluted in complete RPMI medium.

Splenocytes proliferation. Splenocytes were isolated from two spleens of 8-week-old female C57BL/6 mice (CR Janvier, Laval, France). Spleens were aseptically harvested and homogenized in a Petri dish containing HBSS medium (Sigma). Splenocytes suspension was
then hemolysed by buffer containing 20 mM Tris- HCl and 140 mM NH 44 . Cells were washed twice with RPMI, subsequently suspended in complete RPMI medium and seeded at densities of $1.5 \times 10^{5} /$ well in U-bottom 96-well culture plates (Falcon). Cells were incubated with $1 \mu \mathrm{~g} / \mathrm{mL}$ concanavalin A (Sigma) in the presence of the studied compounds $(90 \mu \mathrm{M})$ or CsA $(5 \mu \mathrm{M})$ and cultured at $37^{\circ} \mathrm{C}$ in $5 \% \mathrm{CO}_{2}$ in a final volume of $150 \mu \mathrm{~L}$ of complete RPMI medium supplemented with $50 \mu \mathrm{M}$ mercaptoethanol. Cell proliferation was assessed in sextuplicate after 72 h of culture, by colorimetric detection. Briefly, cells were incubated with $12.5 \mu \mathrm{~g} /$ well of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) for 4 h at $37^{\circ} \mathrm{C}$. Formazan products were solubilized by $100 \mu \mathrm{~L}$ of lysis buffer (dimethylformamide (1V), SDS 20% (2V), pH 4.7) and overnight incubation at $37^{\circ} \mathrm{C}$. Cell growth was assessed using a MRX microplate reader (Dynex Technologies, Chantilly, USA) with the test wavelength at 570 nm and expressed as optical density (OD) values. The inhibition of splenocytes proliferation was expressed as inhibitory rate [(OD value of control untreated cells - OD value of treated cells)/OD value of control untreated cells group] $\times 100$.

Statistics. All results were compared by ANOVA analysis followed by a Dunnett test when the ANOVA test gives a significant difference ($\mathrm{p}<0.05$) between the different groups.

Results and discussion

Access to the cyclic urea analogues was achieved by a two-step method including the preparation and characterization of intermediate ureas. We implemented a process previously described by Gabriel et al. [10] consisting in the addition of a primary amine on a 2 -chloroethyl or a 3-chloropropyl isocyanate. The resulting chloroalkylureas 2-9, 28-32 and $38-41$ are then cyclised by a nucleophilic substitution reaction in alkaline conditions to give the corresponding cyclic ureic compounds $\mathbf{1 0 - 1 7}$, 3337 and 42-45 (Scheme1, Figure 2). The choice of this method was justified by the fact that this process has generated very few failures in the series previously synthesized in our laboratory [11,12]. The amines

10

11

14

Figure 2. Structure of compounds 10,11 and 14.

Table I. Inhibition of the mouse splenocyte ConA-induced proliferation by N-substituted imidazolidin-2-ones 10-17 and 33-37 and tetrahydropyrimidin- $2(1 \mathrm{H})$-ones 42-45

35
ne: not evaluated
used were commercially available except for the aminophthalimides, which were prepared from the corresponding nitrophthalimides by catalytic reduction. Synthesis of the nitrophthalimides was accomplished by the action of an amine on a nitrophthalic anhydride in acetic acid [13,14,15].
The effect of drugs on mouse splenocytes proliferation was examined in order to determine the immunosuppressive potential with a rapid low-cost in vitro test. Freshly isolated murine splenocytes were stimulated with $1 \mu \mathrm{~g} / \mathrm{mL}$ ConA for 72 h in the presence of target cyclic ureas ($90 \mu \mathrm{M}$). Splenocytes were also treated with CsA $(5 \mu \mathrm{M})$ as a positive control. The results are shown in Table I. The molecules, which exhibited a lymphocyte proliferation inhibition percentage lower than 30%, have been considered inactive. Among the 17 tested compounds, three of them exerted a moderate ($\mathbf{1 0}, 60 \%$ and 11 , 43%) to potent ($14,91 \%$) inhibitory activity. Generally speaking it seems that the molecules, which exert an immunosuppressive activity in this screening test show an imidazolidin-2-one scaffold N substituted by a phenyl group. It seems however that the presence of a halogen on the phenyl moiety is favourable to the activity (10, 11 and 14). These observations are in agreement with the data previously observed in imidazolidin-2-one series [9]. On the contrary the methylthio and the phenoxy group have demonstrated no interest (12 and 13 respectively). Moreover the replacement of the phenyl substituent by a heterocyclic group triggered a loss of potency as it can be testified by compounds 15,16 and 17 and by phthalimidic derivatives 34,35 and 37 . Finally the elongation of the ureic cycle is responsible for a suppression of activity. Thus all the molecules of the tetrahydropyrimidin-2(1H)-one series (42-45) are inactive whereas some of their analogues in imidazo-lidin-2-one series were modestly to very potent [9] suggesting the importance of the imidazolidin-2-one scaffold in the induction of an immunosuppressive activity.

In conclusion, three new active molecules have been identified. The compound 14 exerts a potent activity in the ConA test with an inhibition of lymphocyte proliferation of 91%. Complementary studies are being investigated so as to confirm these results on human T lymphocytes. Other experiments must be realized in parallel on human MRC5 fibroblasts to determine the level of cytotoxicity of this molecule.

Acknowledgements

We would like to thank the "Région des Pays de la Loire" for financial support.

Declaration of interest: The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

References

[1] Yang Z, Chen M, Fialkow LB, Ellett JD, WU R, Brinkmann V, Nadler JL, Lynch KR. The immune modulator FTY720 prevents autoimmune diabetes in nonobese diabetic mice small star, filled. Clin Immunol 2003;107:30-35.
[2] Herrmann ML, Schleyerbach R, Kirschbaum BJ. Leflunomide: An immunomodulatory drug for the treatment of rheumatoid arthritis and other autoimmune diseases. Immunopharmacology 2000;47:273-289.
[3] Alarcon GS. Methotrexate use in rheumatoid arthritis. A Clinician's perspective. Immunopharmacology 2000;47: 259-271.
[4] Epinette WW, Parker CM, Jones EL, Greist MC. Mycophenolic acid for psoriasis. A review of pharmacology, long-term efficacy, and safety. J Am Acad Dermatol 1987;17:962-971.
[5] Solsky MA, Wallace DJ. New therapies in systemic lupus erythematosus. Best Pract Res Clin Rheumatol 2002;16: 293-312.
[6] http://test.efg.ddo.net
[7] Ross K. For organ transplant recipients, cancer threatens longterm survival. J Natl Cancer Inst 2007;99:421-422.
[8] Libby P, Pober JS. Chronic rejection. Immunity 2001;14: 387-397.
[9] Sabourin C, Robert JMH, Robert-Piessard S, Carbonnelle D, Lang F. Synthesis and evaluation of disubstituted N^{1} - and N^{3} -
imidazolidin-2-ones acting as potential immunosuppressive agents. J Enz Inhib Med Chem 2004;19:459-465.
[10] Gabriel S, Stelzner R. Ueber vinylamin. Chem Ber 1895;28: 2938.
[11] Abdala H, Robert JM, Le Pape P, Wielgosz G, RobertPiessard S, Le Baut G. Synthesis and antileishmanial activity of new 1-(pyridin-2-yl)imidazolidin-2-ones derived from 2-amino-4,6-dimethylpyridine. Arzneim-Forsch/Drug Res 2000;50:479-484.
[12] Robert JM, Sabourin C, Alvarez N, Robert-Piessard S, Le Baut S, Le Pape G. Synthesis and antileishmanial activity of new imidazolidin-2-one derivatives. Eur J Med Chem 2003;38:711-718.
[13] Pagani G, Baruffini A, Borgna P, Caccialanza G. Different Nsubstutuents of phthalamic acid. Effect on geotropism of germinating roots of Lens esculenta Moench s.l. Il. Farmaco Ed Sci 1968;23:448-467.
[14] Pagani G, Caccialanza G, Vicarini L, Baruffini A. Effect of a series of substances related to N -alpha-naphthylphthalamic acid on root geotropism of Lens esculanta Moench s.1. seeds Il. Farmaco Ed Sci 1970;25:203-225.
[15] Floc'h R. Contribution à l'étude des dérivés de la dihydro-2,31 H -isoindolone-1 Thèse n 57, Université de Nantes, France 1979.

[^0]: Correspondence: C. Sabourin, Département de Pharmacochimie, Faculté de Pharmacie, Université de Nantes, Universités de Nantes Atlantique, BioCiT UPRES EA 1155, 1 rue Gaston Veil, F-44035 Nantes, France. E-mail: caroline.sabourin@univ-nantes.fr

